Mathematical Foundations of Nonlinear, Non-Gaussian, and Time-Varying Digital Speech Signal Processing
نویسنده
چکیده
Classical digital speech signal processing assumes linearity, timeinvariance, and Gaussian random variables (LTI-Gaussian theory). In this article, we address the suitability of these mathematical assumptions for realistic speech signals with respect to the biophysics of voice production, finding that the LTI-Gaussian approach has some important accuracy and computational efficiency shortcomings in both theory and practice. Next, we explore the consequences of relaxing the assumptions of time-invariance and Gaussianity, which admits certain potentially useful techniques, including wavelet and sparse representations in computational harmonic analysis, but rules out Fourier analysis and convolution, which could be a disadvantage. Then, we focus on methods that retain time-invariance alone, which admits techniques from nonlinear time series analysis and Markov chains, both of which have shown promise in biomedical applications. We highlight recent examples of non-LTI-Gaussian digital speech signal processing in the literature, and draw conclusions for future prospects in this area.
منابع مشابه
Aalborg Universitet Non - Gaussian , Non - stationary and Nonlinear Signal Processing Methods - with Applications to Speech Processing and Channel Estimation
The Gaussian statistic model, despite its mathematical elegance, is found to be too factitious for many real world signals, as manifested by its unsatisfactory performance when applied to non-Gaussian signals. Traditional non-Gaussian signal processing techniques, on the other hand, are usually associated with high complexities and low data efficiencies. This thesis addresses the problem of opt...
متن کاملUtilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011